近百年来,由于气候自然波动和人类活动引起的温室效应,地球气候正经历一次以全球变暖为主要特征的显著变化。全球变暖导致了极端气候出现频率增加、厄尔尼诺现象加剧且影响范围变大、冰川萎缩、内陆冻土加剧融化、沙漠化加剧、海平面上升和海水倒灌、水资源短缺加重、湿地面积减少和生物多样性下降。例如,在2001-2010年,全球冰川平均质量年下降速度为0.54 m(相当于水当量)。全球变暖除了引起全球气候变化,还对农业、生态环境和人体健康产生了巨大的影响。大气中温室气体浓度增加引起了大气温室效应增强,并最终导致了全球气候变暖,温室气体主要包括COZ,CHQ和NZO。为了减缓和预测全球变暖的速度,政府间气候变化专门委员会(IPCC )编制了各种温室气体的排放源和吸收汇的全球清单,并预测了未来全球温度的变化;各个国家也都根据本国实际拥有数据情况编制国家温室气体清单。但目前这些温室气体清单还都不是实时清单,都是温室气体排放和吸收的总量。这主要是因为缺少温室气体的实时监测数据和缺少处理海量数据的技术。在大数据时代,网络信息技术和无线通信技术的融合,极大地促进了各种智能传感器的快速兴起和发展,使我们可以获得温室气体、气候等大量实时监测数据和与之相关的非结构化数据;基于云计算环境下,分布式数据存储技术与传统的关系型数据库相结合可以解决海量数据的存储和管理,例如,Hbase , Redis和Key-Valu。等大数据存储技术;同理,这些海量温室气体、气候和其他相关数据的处理分析也需要各种模型和算法,但对于编制实时温室气体清单来说,最关键技术是怎样在线和离线相结合对海量数据进行分析?离线静态数据的大数据处理形式是批量处理,Hadoop是典型的批量数据处理系统。在线数据的大数据处理形式包括实时流式处理和实时交互计算两种,流式数据处理系统如Storm , Scrib。和Flum。等,交互式数据处理系统如Spark和Dremel。另外,利用大数据技术融合温室气体数据和气候模型,预测未来温度的变化速度,例如,人工智能和认知算法等大数据技术。通过编制实时温室气体清单和预测未来温度变化幅度,可以为制定减排措施提供科学依据,同时也为人们的生活带来方便。可以发现,生态环境问题彼此相互联系,相互影响,相互制约。因此,治理和预防需要对区域甚至全球的生态环境情况进行全面分析,找到关键问题与关键区域,制定不同的解决方案与对策,通过对比分析找到最优解决途径。利用大数据在数据采集、数据存储、数据分析,以及数据解释和展示等方面的优势,有利于揭示生态环境问题的本质,并分析其背后的驱动因素及相互作用机制。在数据采集方面,通过建立高密度、全区域和多方位的监测网络体系,配合文本、图片、XML,HTML、各类报表、图像和音频/视频信息等与生态环境相关的非结构化数据和半结构化数据的采集,共同形成生态环境大数据集。在数据存储方面,NoSQL(Not only SQL)数据存储包括分布式文件系统和分布式数据库系统二种类型。通过与大数据的NoSQL数据存储管理技术相结合,克服传统关系型数据库经常由于采用分片技术而出现的存储空间不够、数据加载缓慢和排队加载等问题。在数据分析方面,我国生态环境相关的数据大多是数据集成,供客户端自行下载分析;而大数据分析却能将统计分析、深度挖掘、机器学习和智能算法与云计算技术结合起来,对空气、土壤、水文、生物多样性、气候、人口和社会经济等数据进行关联性分析,这些分析结果可为管理者的决策提供科学支持。除此之外,在数据解释和展示上,传统数据显示方式是用文本形式下载输出,而大数据却可以给用户提供可视化结果分析。由此可见,只有大数据时代我们才能够真正实现复杂生态环境问题的定量评估和精准决策,为加快我国生态文明建设和促进生态环保事业的发展提供科学依据和有效对策。