高职财会类学生需要培养基础的数据分析能力,如总值分析、均值分析、趋势分析、比较分析和分类等,熟悉相关与回归、聚类分析、关联分析等统计学方法;大数据分析能力则需要重点培养数据采集、数据清洗、数据可视化、数据分析、数据挖掘等能力。
1 大数据采集
大数据采集是大数据能力的基础,培养学生快速准确全面获取数据的能力是大数据分析技能的起点。企业各种原始凭证、记账凭证、账簿、报表等会计资料信息采集,包括传统纸质材料和电商电子材料等信息的采集,因为相对工整规范,采集难度不大;培养学生对企业自有数据仓库数据抽取导出能力,将充分发挥企业历年数据作用。
同时,企业不仅要采集企业内部核算资料,还要进行管理活动需要采集原材料价格、市场前景、同类产品销售情况等外部数据资料,这些资料有公开的如钢铁价格、原油价格等,也有不公开的某企业某产品销售情况,所以通过大数据的手段在获取某类产品、某些特点产品的销售情况,或者购买参考公共销售情况数据,需要培养学生爬取数据的能力。
例如,利用八爪鱼进行淘宝、天猫、京东等网站商品检索结果抓取或者商品详情内页资料进行抓取,也可以自行设计或者购买规则进行特定数据抓取;利用公共平台数据对企业商品的竞争情况有更全面的了解,也可以获取消费者的检索热点;对自己产品的评论资料可以进行典型意见和关键词的提取,提高CRM水平,如图1所示。 随着物联网传感器的发展,自动、实时、全面、完整、可靠、准确的数据不断出现,每一个界面、每一个动作、每一次交互都有迹可循并被规范记录,获取的数据也将更加全面,企业的数据采集也更趋自动。
2 大数据清洗
培养学生通过对数据进行多方验证、审核,将有杂质的数据剔除能力;培养学生从格式、逻辑、数值等多方面进行数据清洗和整理,处理缺失值、孤立点垃圾信息、规范化、重复记录、特殊值、合并数据集等问题的能力。
3 大数据分析
对于企业积累数据和获取的外部数据都要及时进行分析应用,快速充分分析数据尤为关键。培养学生数据分析、数据挖掘的技能尤为重要,具体需培养数据分析技能如。
(1)描述型分析:是什么?
描述性分析会提供重要指标和信息。例如,通过每月的销售单据,可以获取大量的客户数据,如客户的地理信息、客户偏好等;也可以了解企业库存、销售等生产经营数据。
(2)诊断型分析:为什么?
通过评估描述型数据,诊断分析工具能够深入的分析数据,钻取到数据的核心,分析某种产品或者某些产品销售量变化原因等。
(3)预测型分析:可能怎样?
预测型分析主要用于进行预测事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点。使用各种可变数据来实现预测,在充满不确定的环境下,预测能够帮助做出更好的决定,如预测原料价格可以辅助决定库存、预测销售可以辅助决定产量、预测业务量可以辅助决定资金筹集量等。
(4)指令型分析:做什么?
指令模型是基于对“是什么”“为什么”和“可能怎样”的分析,帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。例如,交通规划分析考量了每条路线的距离、每条线路的行驶速度、以及目前的交通管制等方面因素,来帮助选择最好的回家路线;企业考量了销售数据的变化、分析了市场和消费者的原因、预判了产品市场前景,进而决定对产品实施哪些改进。
4 大数据可视化
大数据可视化是培养学生对大数据分析结果进行直观呈现能力。培养学生利用企业自有数据或者外部连接数据、抓取数据等方式获得的数据进行全方位呈现的能力,培养学生将数据的汇总、平均、交叉列联分析等描述和分析结果,利用适当的图形进行展示的能力。大数据可视化是非常重要的技能,具体如。
4.1各类变量适合的基本可视化效果
单一变量:点图、抖动图;直方图、核密度估计;累计分布函数。
两个变量:散点图、LOESS平滑、残差分析、对数图、倾斜。
多个变量:假色图、马赛克图、平行左边图。
4.2借助大数据可视化工具,直观展示大数据
大数据具有多维、连续、杂乱等特征,培养学生利用时间轴,动态呈现企业资产、负债、应用资金、利润等方面数据能力,将抽象枯燥的数据直观呈现,辅助企业根据历史生产经营情况和当前社会背景制定合理的预测和决策。